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ABSTRACT
Sensor nodes are often used to collect data from locations
inaccessible or hazardous for humans. As they are not under
normal supervision, these nodes are particularly susceptible
to physical damage or remote tampering. Generally, a hi-
erarchical data collection scheme is used by the sensors to
report data to the base station. It is difficult to precisely
identify and eliminate a tampered node in such a data col-
lecting hierarchy. Most security schemes for sensor networks
focuses on developing mechanism for nodes located higher
in the hierarchy to monitor those located at lower levels. We
propose a complementary mechanism with which the nodes
at lower levels can monitor their parents in the hierarchy
to detect malicious behavior. Every node maintains a rep-
utation value of its parent and updates this at the end of
every data reporting cycle. We propose a novel combina-
tion of statistical testing techniques and existing reputation
management and reinforcement learning schemes to manage
the reputation of a parent node. The probability that the
parent node is malicious is calculated using various combi-
nation of the Q-learning algorithm and the β-Reputation
scheme. The input to the β-Reputation scheme is a history
of boolean events consisting of correct or erroneous data
reporting events by the parent node. The boolean events
are generated at each data reporting period using statis-
tical tests. Our approach can be viewed as a mechanism
composed of different modules for the detection of a mali-
cious event, interpretation of the malicious event and up-
dating node reputation value based on the interpretation.
We have created different versions of our system by varying
these components. We compared the effectiveness of these
alternative designs in detecting different types of malicious
behavior in sensor networks.
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1. INTRODUCTION
With increasingly smaller sizes and reduced costs, the

range of possible application domains for sensor networks
has been expanding continually. Currently, sensor networks
are used for diverse monitoring opportunities, such as fire de-
tection, securing sensitive locations, detecting nuclear leak-
age, etc. An average sensor network consists of hundreds of
node agents. Each node sends its individual sensing data to
a Base Station (BS). The BS processes the data and gives
the final decision to alert the network operator or consider
possible autonomous responses, e.g., shutting down the gas
supply to a building in case of a fire.

Due to their inexpensive and small designs, the capabil-
ity and resources of sensor nodes, including communication
speed, memory space, battery, etc., are very limited. If every
node sends its individual sensing value to the BS, through
multiple hops, there will be a huge amount of network traffic
resulting in network congestion and unnecessary consump-
tion of valuable, limited power resources. In addition, since
the nodes are sensing a common phenomenon, there will be
a high redundancy of raw data. Hence, aggregation of raw
data is often used to improve efficiency and lifetime of de-
ployed sensor networks. The importance of effective data
aggregation is well-recognized in the sensor network litera-
ture [6, 9]. As such, many data aggregation protocols have
been proposed in the literature [4, 7, 19, 12, 3].

However, all these aggregation schemes assume that the
sensor nodes are trustworthy and reporting data truthfully.
In practice though, sensors are usually deployed in open and
unattended environments, and hence are susceptible to phys-
ical tampering. When a node is compromised, the adversary
can inject bogus or misleading data into the network. Tradi-
tional cryptographic techniques are not sufficient to address
such security breaches in sensor network environments. In
addition, the use of nodes with aggregation roles poses other
integrity problems. In each aggregation, the individual sens-
ing values are lost. If an aggregator node is compromised, its
effect can be even more damaging than when an individual
sensing node is compromised.

Research in sensor network security tries to identify ma-
licious or faulty node agents using standard statistical tech-
niques like outlier detection. When a node is identified to
be malicious, it is either eliminated immediately from the
network or at least its effect on the final result is reduced.

In current literature on sensor network security, the mon-
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itoring for sensor node is almost exclusively performed in a
top down process. As data flows from sensor nodes to the
base station via intermediary nodes, a logical hierarchical
structure is imposed on the network. A higher level node in
such a hierarchy monitors data reported to it by its children.
For example, a parent node can collect data reported to it by
its children within a time interval and suspect a child node
to be possibly compromised if it is sending values inconsis-
tent with that reported by its siblings. If the same node is
repeatedly suspected to be compromised, further data re-
ported by it may be ignored. Unfortunately, this also means
eliminating both that node and all of its descendants from
the network unless a time and resource intensive restruc-
turing of the hierarchy is performed. In particular, it is not
easy for the parent node to identify if its immediate children
or any of their descendants is responsible for the erroneous
data. Hence, it is difficult to precisely pinpoint the actual
node that is compromised in a top-down approach.

We propose a complementary, bottom-up, agent-based so-
lution to this problem. We assign agents to each node that
monitor the security status of the network. In our proposed
solution, these child level node agents keep monitoring the
aggregator level node agents for possible inconsistency in the
data they forward. When a aggregator level node is inde-
pendently identified as malicious by its children, it is marked
as malicious and the information is sent to the base station.
The marked node is then excluded from the hierarchy with-
out eliminating any of its children. This is possible due to
the bottom-up monitoring and precise identification of the
compromised node.

We presume that each child level node in the hierarchy is
capable of listening to the data forwarded by its parent to
higher level after aggregation. We justify this assumption
by referring to the fact that the aggregator will be located
within the communication range of the child node. We fur-
ther assumed that, it can store the history of such data re-
porting incidents for certain intervals, subject to their hard-
wire limitations. We have combined techniques from popu-
lar statistical methods and machine learning algorithms to
develop a novel and robust malicious node detection mech-
anism. We have used statistical hypothesis tests to find out
the boolean characterization of a data reporting event as cor-
rect or erroneous. Based on these history of boolean events,
we calculate and update the current reputation values for the
parent node agents using a reinforcement learning scheme.
We have assumed that the data sensed by the children of
an aggregator node are drawn from the distributions with
a common mean. Our assumption is reasonable, as, being
located in physical proximity, they can be assumed to be
sensing similar data values from the environment and their
sensed data items should be comparable. The reinforcement
learning scheme used makes our mechanism robust and pre-
vents false identification of non-malicious aggregators.

In the next section we describe related work on security
management in sensor network and different types of rein-
forcement learning scheme in machine learning literature.
In section 3 and 4, we describe our framework and different
statistical techniques. In Section 5, we describe the machine
learning approaches along with the insight on using them.
In section 6, we present the different schemes we used and
along with the experimental results and in section 7, we ex-
plain the crux of our algorithm and outline further research
prospects.

2. RELATED WORK
A lot of work has been done in securing sensor network

applications like key establishment, secrecy, authentication,
robustness to denial-of-service attacks and secure routing.
Most of this research have been based on the conventional
cryptography techniques to protect confidentiality, integrity
and availability. SPINS [15] implements symmetric key cryp-
tography with delayed key disclosure to achieve asymmet-
ric key cryptography. SPINS incorporate both Secure Net-
work Encryption Protocol (SNEP) which provides data con-
fidentiality, authentication, integrity freshness and μTESLA
which provides authentication to broadcast. In addition, [2]
and [5] proposed probabilistic key sharing mechanisms to
detect the key distribution problem. However, sensor net-
works are commonly deployed in open and unattended ar-
eas, and as a consequence, vulnerable to physical tamper-
ing. Whenever a sensor node is compromised, the adversary
can obtain its confidential keys and inject bogus informa-
tion into the network without being detected. Thus, cryp-
tography alone is not sufficient to protect sensor network
environments.

Most work on data aggregation [4, 7, 19, 12, 3] assume
trustworthy environments. SDAP [23] has proposed a se-
cure aggregation approach in presence of dishonest sensors,
which can detect and drop false reports. Nonetheless, in
SDAP, only BS is responsible for the detection of deceit-
ful nodes and hence it is not a distributed approach and is
susceptible to single point of failure. Besides, in case of an
attestation failure all data flowing from the marked group is
discarded and the sensing value of many nodes are unneces-
sarily eliminated. Sampling techniques have been exercised
by SIA [16] to calculate summary report even when a frac-
tion of the node agents are malicious. SIA does not deal
with per-hop data aggregation and BS is the only aggre-
gator. It assumes all node agents send their raw reading
values to BS. Hu and Evans [8] introduce a hop-by-hop se-
cure data aggregation system, but their system works only
if one node is compromised. On the other hand, only the
lead node agents can have their own sensing values.

Interest in applying artificial intelligence techniques to se-
curing sensor network environments is rising. Mukherjee
and Sen [14] uses an offline neural network based learning
technique to model spatial patterns in sensed data. The net
is used to predict the sensed data while working on-line and
according to differences between prediction and real sensor
reading, the parent updates the reputation of each of its chil-
dren. Q − Learning and β − reputation based approaches
are used to detect faulty nodes. Their mechanism works
in a top-down manner, so in case of a fault detection the
node and all its descendants are eliminated. Additionally,
all the patterns need to be learned before detection mech-
anism starts, which might not be applicable for all sensor
network environments, such as nuclear leakage detection and
fire detection.

Servin and Kudenko [18] applies reinforcement learning
techniques for intrusion detection. Wu etal. [22], Ruairi
and Keane [17] base their detection systems on multi-agent
systems. The critical issue of aggregation, however, is not
addressed by any of these researches.

In this research, our aim is to propose a mechanism that
utilizes statistics and Artificial Intelligence techniques to
detect malicious node agents in a sensor network environ-
ment without unnecessarily eliminating honest node agents,
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e.g., the descendants of a malicious node. Our system sup-
plements existing sensor network security approaches, e.g.,
cryptographic techniques and top-down monitoring.

3. PROBLEM DESCRIPTION
In sensor network environments, a malicious node agent

might have two objectives: (a) introducing arbitrary noise in
the final data reported to the base station, or (b) biasing the
results to systematically report under or over-estimations of
the actual environmental parameters being monitored. In
the former case, the node agent introduces random errors
to the system and in the latter case malicious nodes consis-
tently add errors of the same sign. The range of such errors
and hence the possible damage to the system can be limited
by using outlier detection systems. The effect of individual
malicious node agent, therefore, will be small on the final
data reported to the BS. Multiple colluding node agents can
have an effect only if they synchronize their reported errors.
For example, if a number of colluding node agents are trying
to prevent detection of fire, to outperform outlier detection
schemes, all of them must coordinate to under-report the
temperature. The effect of a malicious node on the data
reported to the BS increases if the malicious node is closer
to the base station in the hierarchy. We believe that a dis-
tributed, rather than a centralized, security envelop is indis-
pensable for truly distributed systems like sensor networks
to counter security threats. While almost all sensor network
security work focuses on top down monitoring of child node
agents by parents in the network, we investigate a comple-
mentary bottom-up approach where children monitor their
parents for erroneous data reporting.

In our framework, node agents are arranged in a hierarchy.
An aggregator node agent calculates the aggregation value
from its own reading (if it is also sensing) and the values
received from its child node agents. In this paper, we use
the averaging function as the aggregation function. We as-
sume local continuity in the environment. Hence, the data
values sensed by a node agent, its siblings, and their par-
ent are drawn from the same data distribution. We further
assume that the children of a node agent can read the aggre-
gated data forward by the parent node agent to node agents
further upstream towards the base station. The research
problem is then for a child node agent to detect consistent
deviations form the true mean of the average value reported
by the parent node. Note that this is difficult to do in gen-
eral because a child node does not have access to the data
reported by its siblings and hence the true mean.

We now specify the bottom-up malicious node agent de-
tection problem more formally. Let us consider a node agent
in the hierarchy with n children. The data sensed by the ith
child at time t is represented by a random variable, Xt

i .
The true aggregate of the reported values is represented by
Xt =

Pn

i=1 Xt
i . Let Xt be the data actually reported by

the parent node as the aggregate value. The ith child node
agent then has access to only the values of Xt

i and Xt. Its
goal is to identify consistent deviations between Xt and Xt.
Though this cannot be done directly, we restate the problem
of detecting consistent deviations between Xt

i and Xt to be
an indirect indicator of the actual problem.

In case of directional broadcast communication, a mali-
cious aggregator might try to send different values to its
parent and its children. As public key encryption technol-
ogy is commonly used in wireless sensor network environ-

Figure 1: A sample topology.

ments [11, 21], to prevent such a situation, we present a
verification protocol, that utilizes public key authentication
scheme for the child nodes to confirm the value reported by
their parent further downstream. To illustrate this we use a
part of the network presented in Figure 1:

1. An aggregator node agent A sends its aggregation value
to its parent P as well as broadcasts it to its children
C1, C2, . . . , Cn.

2. When the parent node agent P receives the aggrega-
tion value, it signs it with its private key and sends
both the raw and signed aggregation results to the ag-
gregator node A.

3. The aggregator A forwards the two values raw and that
signed by P , to its children C1, C2, . . . , Cn.

4. Child node agents verify the aggregation value for-
warded by A, by comparing it to the signed value re-
ceived from P . Moreover, since P sends a signature as
well, A cannot tamper the raw aggregation value sent
by P , cause the children can unsign it by using the
public key of P .

To summarize, the message transactions are as follows:
A → P : agg val
A → n1, n2, n3: agg val
P → A: agg val & Signature(agg val)
A → n1, n2, n3: agg val & Signature(agg val)

where agg val is the aggregation value.
Note that we are not dealing with the secrecy of the aggre-

gation values. Instead, we are concerned about the truthful-
ness of the aggregated value. Although we have not included
any cryptographic technique for the privacy of messages, an
actual system might use them.

4. STATISTICAL APPROACH
We consider the fact that the sensor node agents are moni-

toring real environment, so there will be variation in the data
pattern sensed by the sensors even though they are in close
proximity. Moreover, the sensors are not necessarily identi-
cally calibrated. So, same data can be sensed as different by
two different sensors. Yet, when we find out the differences
of sensed and reported data pattern, we should get unbiased
difference values, i.e., there will be as many positive differ-
ence as negative differences. Based on this assumption we
use statistical techniques to determine malicious biases.

Depending on the outcome of the statistical tests, we de-
velop a robust reputation mechanism to detect the malicious
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aggregators. The outcomes of the statistical tests are inter-
preted in different ways in various configurations.

Real Interpretation: We have used the raw probability
value obtained from the statistical tests as the current
instant reputation value.

Boolean Interpretation: We have also used the signif-
icance level for the hypothesis tests as a threshold to
produce a boolean value of corret or erroneous for each
data reporting event. Based on these boolean events
we calculate the current reputation value using the β-
reputation scheme. This current reputation value is
then used to update the actual reputation using the
Q- learning scheme.

We have simulated different types of errors to find out the
limitations of statistical test and then to plan for possible
solutions. For example, a child node is capable of detecting
consistently smaller (or greater) Xt

i than Xt by using Sign
Test. But it will not be sufficient to detect smarter one-sided
bias, which will occur when the aggregator will intelligently
introduce negative and positive errors with equal frequency
but significantly different magnitude. In that case, Wilcoxon
Signed Rank Test will be useful.

We explain the operation technique of sign test and signed
rank test below:

Sign Test:.
The sign test makes use of the positive and negative dif-

ferences between observations [13]. Let, (X1j , X2j), j =
1, 2, ....n be a collection of paired observations from two con-
tinuous population and the paired differences are

Dj = X1j − X2j , j = 1, 2, ....n.

Our aim is to determine whether the two data sets have the
same median fμ1 = fμ2 (or mean). It can also be accom-
plished by testing of the median of difference, fμD is 0. We
apply sign test to our sensor network environment as follows:
X1j : The node’s readings
X2j : Aggregated value from parent.
n+: Number of positive differences.
n
−

: Number of negative differences.
n = n+ + n

−
Total number of readings

k = min(n+, n
−

)
The probability that the two data sets are produced from

the same distribution is calculated by the equation

2
kX

i=0

n!

i!(n − i)!

1

2n
.

Wilcoxon Signed-Rank Test:.
Even if the sign test is applied, an adversary can still

undermine the system by providing equal number of pos-
itive and negative errors which differ in magnitude. Sign
test does not take into account the amplitude of the dif-
ferences [13]. For instance, in the scenario of Table 1, the
number of positive and negative differences are equal, but
the magnitudes of these difference values are quite different.
Even though the results are faulty, sign test cannot identify
this aggregator as malicious. Frank Wilcoxon devised a test
procedure that uses both direction (sign) and the magnitude
of errors [13]. The algorithm works as follows:

Table 1: An example situation where sign test does

not work.

i X1 X2 Difference
1 30 36 -6
2 31 30 +1
3 28 26 +2
4 33 38 -5

Table 2: Wilcoxon signed-ranked test.

i X1 X2 Difference Rank
2 31 30 +1 +1
3 28 26 +2 +2
4 33 38 -5 -3
1 30 36 -6 -4

i. Sort the differences according to their absolute values.

ii. Assign their ranks correspondingly with their position
in the list.

iii. Add the sign of corresponding difference value to each
rank.

Table 2 displays how to assign the ranks. In the table, the
absolute sum of positive ranks is w+ = 1 + 2 = 3 and the
absolute sum of negative ranks is w

−
= | − 3| + | − 4| = 7.

Using the values of w
−

and w+, we calculate

Z =
W − 0.5 − N(N + 1)/4p

N(N + 1)(2N + 1)/24
.

where, W = max(w
−

, w+) and N =number of pairs. From
Z we obtain p-values using Standard Normal Approxima-
tion. Finally, based on the chosen significance level, we mark
the data reporting event as accurate if the calculated p-value
> significance level or erroneous if the calculated p-value <
significance level.

Following statistical theories of hypothesis testing, if the
test p-value < significance level, we can refute the Null Hy-
potheses (H0) with the error in this decision influenced by
the significance level chosen. The Null Hypotheses (H0)
posits that the data distributions under consideration have
the same mean.

5. REPUTATION UPDATE SCHEME
As already mentioned, we have used two different types of

interpretations from the probability value obtained from the
statistical tests: (a) Real Interpretation or (b) Boolean

Interpretation. We use the results of these statisical tests
as a measure of the correctness of data reported at a par-
ticular time period. Because of the underlying noisy en-
vironments or variabilities in the sensor node agents, it is
not advisable to use these point probabilities at any one
time period to identify a node agent to be malicious or safe.
Sequences of such tests for each node must be carefully in-
tegrated to arrive at a conclusion about its trustworthiness.
To develop and maintain the reputation of a node agent over
time, these test results are fed to a reputation management
scheme. We have used either a β − reputation [10] scheme
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or Q-learning [20], a reinforcement learning scheme, or a
combination of the two.

The β−reputation scheme calculates the reputation value
of a node agent based on the number and order of occur-
rence of correct and erroneous data reported by this node
in the past. Let x and x̄ be the correct and erroneous data
reporting events respectively obtained from the statistical
test used, and rt and st be the number of occurrence of x
and x̄ respectively. Then the reputation at any instant t,
Pt, is calculated by the expected value of the underlying β
distribution as:

Pt =
rt − st

rt + st + 2
.

For Recency β scheme, which gives more importance to
more recent experiences, we use the same equation for cal-
culating Pt. However, in that case rt and st are calculated
as follows:

rt =
tX

i=1

xi · γ
(t−i)

st =

tX
i=1

x̄i · γ
(t−i)

where, 0 ≤ γ ≤ 1 is the discount factor. We experimentally
determined a suitable value for γ to be 0.7.

A reinforcement learning scheme, like Q-learning, can be
used to update the estimation of any time-varying perfor-
mance metric. We use the calculated reputation value Rt

from a statistical test at an instant t to calculate actual
reputation value using the Q-learning mechanism. The rep-
utation scheme keeps an exponential weighted moving aver-
age, rt

i , of the probability of the parent of node agent i being
trustworthy after the tth data reporting epoch. This value is
incrementally updated by the following reinforcement learn-
ing scheme [20]:

ri
t = α · ri

t−1 + (1 − α) · Ri
t

where for time period t, node agent i calculates the likeli-
hood of data reported by its parent to be accurate as Ri

t

using one of the statistical tests. α ∈ [0, 1) is the learning
rate. We have used α = 0.1.

A parent node is marked as malicious if its reputation
value falls below a threshold in the estimation of a pre-
determined number of its children.

6. EXPERIMENTAL RESULTS
To evaluate the relative effectiveness of Q-learning and

β-reputation in efficiently identifying malicious parent node
agents, we performed experiments with different combina-
tion of Q-learning and β-reputation modules. For all the
experiments, we used a publicly available configuration of
sensors deployed in a lab environment in Intel Berkeley Re-
search Lab[1]. In this environment, there are 54 nodes lo-
cated strategically in a room to sense various environmental
factors. We have used only the configuration of the node
agents not the data collected by the environment. In that
network we have chosen 8 clusters of sensor nodes and 1 ag-
gregator node per cluster. For all of these experiments, we
have chosen 5 out of 8 aggregators to be malicious. To ob-
tain stable values with the β-reputation scheme, we calculate
the reputation values based on the last 100 data reporting
iterations, i.e., n = 100.

Figure 2: β & Q

Figure 3: Only Q

We have drawn samples from a Normal Distribution of
the form N(0, 0.01) to form the data set for the sensors. We
assume that only the leaf level node agents sense data from
the environment. All the node agents located further above
in the hierarchy only forwards the data reported to it after
aggregation. We assume that at every data reporting event
each leaf node agent gathers data and forwards that to its
parents. Malicious aggregator node agents start injecting
errors in the aggregated values after the first 100 data re-
porting events. We create different Error models to show
the strengths and limitations of the tests used. We present
our results in the following sequence of scenarios:

1. In the first scenario, the sign test is expected to identify
malicious node agents,

2. In the next scenario, the sign test should fail but the
sign rank test is expected to be successful in detecting
malicious behavior.

3. Finally we present a scenario where the node agents
using only sign rank test as their detection mechanism
can be fooled but can successfully detect such behavior
if they use the Sign Test.

Along with these three types of variation of Error Model, we
also observe the effect of using different schemes consisting of
different reputation maintenance modules. The performance
metric we used for these tests is the iteration at which all
the malicious node agents are successfully detected.

6.1 Error Detection Schemes:
The Error Detection Scheme we employ uses some com-

bination of Thresholding and β-Reputation or Q-learning
modules after obtaining the probability value from the sta-
tistical tests. The role of these modules are described below:

Thresholding: Upon receiving the p-value from the Statis-
tical Tests, we use the Significance Level to determine
the probability with which the statistical test is refut-
ing the Null Hypothesis (H0). For our experiments,
refutation of Null Hypothesis (H0) indicates the fact
that the data sets fed to the statistical test are drawn
form distributions having different mean value. We
refer to this process as Thresholding by Significance
Level.

β-Reputation: This module is used to calculate the repu-
tation given either a sequence of probabilities or boolean
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values. We have used both Simple β and Recency
weighted-β reputation mechanisms to devlop different
security schemes.

Q-learning: We use Q-learning to maintain the reputation
values of parents by each of its children. It takes into
account the history of significance test results from pre-
vious data reporting intervals. We can increase or de-
crease the effect of history on the computed reputation
by adjusting the value of the learning rate, α.

We form different reputation management schemes utilizing
various combinations of the above mentioned modules to
devlop the following schemes:

6.1.1 Scheme 1 (β & Q):
In this scheme, at first we perform sign test or sign rank

test to obtain the p-value. Then we use Thresholding to
get a boolean value. This boolean value is used as input
to the β-Reputation module. This module calculates the
reputation value based on the last 100 statistical test results.
The probability values calculated by this module is fed to
the Q-learning mechanism to determine the final reputation
value. Thus considers previous history of the parent nodes.
Q-learning together with β-Reputation adds some inertia to
the belief of leaf level nodes about their parents. Due to
the case of multiple modules this scheme is computationally
more resource intensive than the other schemes elaborated
below.

6.1.2 Scheme 2 (Only Q):
In this scheme we directly use the p-value obtained from

the statistical tests in the Q-learning equation. This scheme
is computationally cheap, but depending on the value of
α, may be either too sensitive or insensitive to past his-
tory. Being over-sensitive to recent history can lead to de-
tection of non-malicious nodes as malicious. On the other
extreme it might take a long time to detect malicious be-
haviors. Hence, it is important to judiciously choose the
learning rate. This problem, however, is a characteristic of
any recency-weighted scheme.

6.1.3 Scheme 3 (Recency β):
In this scheme we perform Thresholding on the p-value

obtained from the statistical tests and then input that value
to the Recency weighted -β reputation scheme (this is simi-
lar to the basic β-reputation scheme but puts exponentially
higher weights on more recent events). This module gives
more inertia to the detection mechanism than Scheme 2 and
is computationally more efficient than Scheme 1.

6.1.4 Scheme 4 (Q with Thresholding):
In this scheme we use Q-learning mechanism coupled with

the Thresholding technique. The boolean value obtained
from the thresholding scheme is fed to the Q-learning equa-
tion as the current reputation (Ri

t).
We have used the four schemes mentioned above in dif-

ferent scenarios and compared their results.

6.2 Detecting more frequent one-sided errors
(Error model 1):

In this experiment, we incorporate errors sampled from
another Normal Distribution with mean being k times the
Standard Deviation (σ) of the Sensing data set. We varied

Figure 4: Recency β

Figure 5: Q with Thresholding

k from 0.5 to 1.5 in steps of 0.25. Error generated from
this distribution is directly added to the aggregated value of
the malicious aggregators. As expected, both Sign Test and
Sign Rank Test are almost equally capable of detecting such
errors as shown in Figures 6 and 7 respectively.

It is clear from the results that different schemes have dif-
ferent efficiencies for detecting malicious node agents. This
can be explained by the internal mechanism that is involved
in the computation of reputation for each scheme. For Scheme
1, detection is considerably delayed compared to other schemes.
This occurs because the basic β-reputation scheme gives sig-
nificantly more importance to the history of the parent node
than any other scheme. The Q-learning Scheme (Scheme 2)
appears to be particularly fast in identifying malicious par-
ents. We, however, observed that for larger error rates (error
rates greater than 0.01) it also produces false positives, mis-
identifying normal parents as erroneous ones. Schemes 3
and 4, though not as fast as Scheme 2 in detecting mali-
cious parents, are more robust than Scheme 2 and does not
raise any false alarms. Hence, our recommendation is to use
Scheme 2 for lower error rates and either Scheme 3 or 4 for
larger error rates.

6.3 Detecting larger errors on one side (Error
model 2:)

In this error model, we incorporate positive and nega-
tive errors in the system with equal frequency with error
magnitudes on one side being larger than that on the other
side. We again sample errors from a similar Normal Dis-
tribution as in the previous error model. But this time we
square the errors on one side to generate different magni-
tudes for positive and negative errors though both types of
errors occur with equal frequency. In this case we expected
the malicious node agents to remain undetected if the child
node uses Sign Test, whereas they should be correctly iden-
tified by using Sign Rank Test. Our results support this
hypothese. The relative success of the various reputation
management schemes using the Sign Rank test is shown in
Figure 8. The trends are consistent with those discussed in
Section 6.2.

6.4 Detecting balanced errors of different fre-
quency (Error Model 3):

We design this final error model to emphasize the im-
portance of using both of the statistical tests. We sample
errors from an uniform distribution. If the generated value
is greater than 0 < δ < 1 we add a positive error but after



Oly Mistry, Anıl Gürsel, Sandip Sen • Comparing Trust Mechanisms for Monitoring Aggregator Nodes in Sensor Networks

991

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.005  0.006  0.007  0.008  0.009  0.01  0.011  0.012  0.013  0.014  0.015

Ite
ra

tio
ns

Error Rate

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Figure 6: Sign Test results with Error model 1.
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Figure 7: Sign Rank Test results with Error model

1.

scaling it down appropriately. Otherwise, the negative er-
ror of that value is added without any scaling. The scaling
down is performed such that the total value of the positive
errors is the same as the total value of the negative errors.
This way we make sure that the malicious aggregators are
introducing errors with different frequencies but the cumu-
lative error of one type is almost equal to that of the other
type.

In this case, mechanisms using the Sign Rank test cannot
identify the malicious node agents. The mechanisms could
detect the malicious node agents using the Sign Test for some
erorr rates but their performance appears to be more erratic
than for the other error models. For example, only Scheme
2 can detect all malicious nodes for δ = 0.4. This case is
difficult to detect with Sign Test as positive and negative
errors are almost equally frequent.

7. CONCLUSION
In existing security techniques the aggregator node agents

monitor their children. In this paper, we propose a novel
mechanism where node agents reporting to an aggregator
node can detect whether the latter is malicious. Our mech-
anism combines techniques from statistics and artificial in-
telligence for robust error detection when there is a bias
in the reported errors. We experiment with various types
of malicious behavior to demonstrate the robustness of our
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Figure 8: Sign Rank Test results for Error Model 2.
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Figure 9: Sign Test results with Error Model 3.

combined approach. An important observation is that very
high learning rates can increase detection but also introduce
unacceptable false positives.

In the future, we plan to examine additional combina-
tions of statistical and AI approaches for use in malicious
node detection in sensor networks. One drawback of the
schemes presented here is that they cannot detect unbiased
errors introduced by the aggregator node. We will imple-
ment reputation calculation schemes for more sophisticated
malicious node agents by incorporating techniques like the
Chernoff bounds and Chebyshev inequality. We also plan to
test the system with more complex attacks. For instance,
we want to visualize the reaction of the system to dynamic
behavior changes of the compromised node agents.
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